individual channel trace
This is a plot designed to show trace data from electrodes pulled directly from the packet data received from the FPGA. It is dynamic (showing from 1-8 plots at once) depending on the number of channels in each packet. This is more barebones than the other channel trace function, to optimize for real-time. (compare to plots.individual_channel_trace)
setupSpikeTrace(list_of_plots, CURRENT_THEME, themes)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
list_of_plots |
required | ||
CURRENT_THEME |
required | ||
themes |
required |
Source code in src/controller/plots/realtime_channel_trace.py
def setupSpikeTrace(list_of_plots, CURRENT_THEME, themes):
"""
Args:
list_of_plots:
CURRENT_THEME:
themes:
Returns:
"""
for plot in list_of_plots:
plot.getAxis("left").setTextPen(themes[CURRENT_THEME]['font_color'])
plot.getAxis("bottom").setTextPen(themes[CURRENT_THEME]['font_color'])
plot.getAxis('top').setTextPen(themes[CURRENT_THEME]['font_color'])
plot.setLabel('left', '# ???')
plot.setLabel('bottom', 'Time (ms)')
update_channel_trace_plot(app, next_packet, CURRENT_THEME, themes, extra_params)
This function updates the model for the trace plots when a new packet arrives. The plots are updated even faster through 'continuouslyUpdateTracePlotData()', which scans through the packet slowly to visualize model as realtime.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
trace_plots |
required |
Source code in src/controller/plots/realtime_channel_trace.py
def update_channel_trace_plot(app, next_packet, CURRENT_THEME, themes, extra_params):
"""
This function updates the model for the trace plots when a new packet arrives. The plots are updated even faster
through 'continuouslyUpdateTracePlotData()', which scans through the packet slowly to visualize model as realtime.
Args:
trace_plots:
Returns:
"""
trace_plots = extra_params
# Generate subplots
for m, plt in enumerate(trace_plots):
plt.clear()
times = next_packet["packet_data"][m]["times"]
data = next_packet["packet_data"][m]["filtered_data"]
chan_idx = next_packet["packet_data"][m]["channel_idx"]
from src.model.data_loading_mat import idx2map
row, col = idx2map(chan_idx)
# crop to area where model != 0
nonzero_data = np.where(data != 0.)[0]
first_nonzero_index = nonzero_data[0]
last_nonzero_index = nonzero_data[-1]
# TODO [later] check why the dims of times and model don't match
# crop to range
data = data[first_nonzero_index:last_nonzero_index]
times = times[first_nonzero_index:last_nonzero_index]
begin_time = times[0]
end_time = times[-1]
# TODO [later] more principled way of doing x and y range
WIDTH_OF_TIME_TO_DISPLAY = 250
center_time = (end_time - begin_time) / 2
#plt.setXRange(begin_time + center_time - WIDTH_OF_TIME_TO_DISPLAY/2,
# begin_time + center_time + WIDTH_OF_TIME_TO_DISPLAY/2,
# padding=0)
channel_noise_mean = app.data.df.at[chan_idx, "noise_mean"]
channel_noise_std = app.data.df.at[chan_idx, "noise_std"]
# channel_noise_mean = app.model.array_indexed["stats_noise+mean"][row][col]
# channel_noise_std = app.model.array_indexed["stats_noise+std"][row][col]
plt.setYRange(channel_noise_mean - 10 * channel_noise_std,
channel_noise_mean + 10 * channel_noise_std,
padding=0)
tooltip_text = '<html>Trace signal of electrode #' + str(chan_idx) + \
'<br>Row ' + str(row) + ', Column ' + str(col) + \
'<br>From time ' + str(round(begin_time, 2)) + 's to ' + str(round(end_time, 2)) + \
's after this recording started.' + \
'<\html>'
plt.setToolTip(tooltip_text)
# TODO add channel name as the background
plt.getAxis("left").setTextPen(themes[CURRENT_THEME]['font_color'], size='20pt')
plt.setLabel('left', 'Ch ' + str(next_packet['packet_data'][m]['channel_idx']))
plt.plot(times, data)